
[] or SUCCESS is Not Enough:

Current Technology and Future Directions in

Proof Presentation

| Extended Abstract |

Johann Schumann, RIACS / NASA Ames
Peter Robinson, QSS / NASA Ames

M/S 269-2, Mo�ett Field 94035, CA, U.S.A.
email:schumann@ptolemy.arc.nasa.gov

Ph: +1-650-604-0941

1 Introduction

Automated theorem provers for �rst order logic are now around for several
decades. Over the last few years, their deductive power to solve hard problems
has increased tremendously. The annual CASC system competitions [Se97] give
a clear picture of this situation. However, today's automated theorem provers
are restricted \more by general usability than by raw deductive power"1. As a
result of this, there are only very few serious applications of automated theorem
provers.

There are numerous features which a theorem prover lacks for real-world
applicability. An automated theorem prover (as it is currently seen) is nothing
more than a fast and elaborate search procedure. In that sense, an ATP can
compared to a formula-1 race car, cool and fast, but virtually unusable for
shopping groceries around the corner. Many important features are missing, or
are optimized for speed rather than for applicability. [Sch01] identi�es important
features which are needed for practical usability like detection of non-theorems,
handling of modal/inductive proof tasks, control of the prover, and proof output.

In this paper, we will focus solely on the last point, the presentation of the
ATP's result to the user. In the rest of this paper, we will �rst discuss the
general importance of providing feed-back to the user, then we will describe the
system ExplainIt!, a part of the deductive synthesis system Amphion/NAV. In
the conclusions we will relate proof presentation to other ways of post-processing
a proof found by an ATP and stress their role in the future of automated de-
duction.

1M. Kaufmann in his invited talk during CADE 15 [Kau98].

1

2 Output of an Automated Theorem Prover

For the following, let us consider refutation-based automated theorem prover,
using an analytical calculus (e.g., Setheo [Let92, GLMS94]), or a synthetic
resolution-based calculus (e.g., OTTER [McC94]): given a set of clauses such a
system tries to �nd a refutation, and, in case it exists, the prover (hopefully)
derives the empty clause [] or constructs a closed tableau. For the developer of
an ATP, the output of \UNIT CONFLICT at t seconds", or \SUCCESS" together
with the run-time is of major importance.

For some applications, such an output can be su�cient (see, e.g., the system
NORA/HAMMR [FSS98] for software reuse); for most applications, however,
additional feed-back has to be given back to the application system or the user2.
In general we can distinguish between the following levels of detail (for more
details see [Sch01]):

1. system- and proof-related information like the number of inference steps
in the proof, or the clauses participating in the proof provides very basic
feed-back. Nevertheless, such information can be very helpful, e.g., for
minimizing domain theories or for knowledge-based applications.

2. answer substitutions denote substitutions of variables in the query of a
logic program and often carry the \calculated" result. Also for pure the-
orem proving applications, this kind of feed-back can be very important.
For example, in deduction-based synthesis as performed by Amphion, the
synthesized program is returned as a variable substitution of the proof
obligation (see below).

3. the entire information contained in a successful refutation is present in a
machine-oriented proof. Usually based upon an internal representation of
the proof states such a proof can readily produced by most automated
theorem provers. However, such a proof usually cannot be read, even by
an expert, because the extreme level of detail obfuscates clear layout and
presentation. Machine-oriented proofs, on the other hand are extremely
important, because they provide all the necessary information such that
the proof can be checked for soundness by a proof checker.

4. a machine-oriented proof on the source level has pretty much the same
properties as (3), but all terms and formulas are presented on the source
(or application) level. Here, all transformations of the original formula
(e.g., translation from a di�erent logic, conversion into clausal form, Skolem-
ization), have to be \reversed", usually an extremely di�cult task.

5. If the chain of reasoning has to be presented to the user, a human-readable
proof has to be generated out of the machine's proof. This task is inher-

2In this paper, we only discuss feed-back in case, an actual proof could be found. Feed-back
in the case where the prover does not terminate, because the formula is not unsatis�able or
too di�cult, is a much harder problem with no general solution. For some initial techniques
see [Sch01].

2

ently di�cult, because issues of layout, transformation of proofs into a nat-
ural deduction style proof, hiding of excessive detail, among others, need
to be addressed properly. The ILF system [DW95] (and the stand-alone
subsystem ILF-Setheo [WS97]) translate machine proofs (e.g., found by
Setheo or OTTER) into a nicely formatted LATEX-document. Other ap-
proaches have been developed for
mega [Hor99].

The next section describes a deduction-based synthesis system which does
not only produce executable code via answer substitution (issue 2), but also
generates an explanation of the generated code. This explanation is directly
extracted from the machine proof. However, it is presented in a human-readable,
domain-oriented way. Thus the following description relates to points (4) and
(5) from our list.

3 An Example: Amphion/NAV

3.1 The Domain

All vehicles, not bound to road or rail need means to determine their position
and attitude. A variety of di�erent techniques have been developed, ranging
from simple devices to measure angles (e.g., compass) to complex systems like
radio-navigation or the satellite-based global positioning system (GPS). In order
to obtain an accurate and reliable position estimate, usually multiple measure-
ments obtained from various sensors are combined by a numerical �lter, called
Kalman Filter [BH97].

Recent incidents (e.g., Mars Climate Orbiter (MCO) or Mars Polar Lander
(MPL)) indicate that problems in generating reliable software for state estima-
tion have not been addressed adequately. Such problems typically arise when
certain assumptions (e.g., on measurement noise or sensor failure, see MPL) are
not obeyed or the combination of sensors (e.g., same physical units (MCO) or
coordinate systems) with the �lter is not performed carefully.

Because for this safety-critical domain a variety of architectures exists which
require experimentation and prototyping, this domain has been chosen for our
deductive synthesis system Amphion/NAV.

3.2 System Architecture

In Amphion/NAV, the user gives a graphical speci�cation of all sensors and
their characteristics using abstract geometrical representations of the objects
under consideration (e.g., angle-between-two-points). This speci�cation is then
converted into a �rst-order formula. By traditional deductive synthesis [MW92],
the construction of the program corresponds to �nding a proof that an object
exists which ful�lls the speci�ed properties, namely D ` 8I 9O : spec(I; O)
where spec is the speci�cation, D the domain theory, and I; O are inputs and
outputs, respectively.

3

For the proof search, the resolution-based theorem prover SNARK [SWL+94]
is used. Once a proof has been found, the variable substitution for O comprises
an applicative term representing the synthesized program. This term is sub-
sequently converted into C++ code which then can be linked into Octave, a
Matlab-style numerical environment.

3.3 The ExplainIt! Documentation Generator

Certi�cation procedures for safety-critical applications (e.g., in aircraft or space-
craft) often mandate manual code inspection. This inspection requires that the
code is readable and well documented. Even for programs not subject to certi-
�cation, understandability is a strong requirement as manual modi�cations are
often necessary, e.g., for performance tuning or system integration. Automat-
ically generated programs are often hard to read and understand. In order to
overcome this problem, one central component of Amphion/NAV is ExplainIt!
which generates explanations along with the synthesized program. By providing
various kinds of documentation, all parts of the synthesized program is docu-
mented properly. Furthermore, traceability from the generated program back to
the model speci�cation is guaranteed. Both, the synthesized program and the
explanations are generated by SNARK: the program is based upon the answer
substitution, the explanations are generated from information contained in the
proof log.

In Amphion/NAV, the domain theory is given as a set of �rst-order axioms,
most of them are equations. These equations relate the various objects on
di�erent abstraction levels. Each of the axiom is augmented by an explanation
template. The explanation template consists of one or more pieces of English
text, describing the (domain) background behind the corresponding part of the
axiom. Templates can contain references to speci�c term positions in the axiom
which are then instantiated or are cause for a (recursive) sub-explanation to be
generated. All term-positions are given in the usual way as a path through the
term tree.

When SNARK has found a proof, it generates a proof log. This log lists all
proof steps together with the names of the used inference and rewriting rules.
However, no information is provided on where in the term a rewriting rule has
been applied. Therefore, ExplainIt! contains code to reconstruct required parts
of the proof [vBRLP98]. Once the entire proof is re-generated, the explanation
templates are traversed and its references instantiated. Then the entire expla-
nation (basically an explanation for anything in the synthesized code) is written
as an XML document. Figure 1 shows a small portion of the XML document.
From this we generate

� a browsable version of the synthesized C++ code. Hotlinks from each part
of the code (e.g., variable name, function call) point to corresponding parts
in the explanation document.

� a hyper-linked explanation document. This document contains English
text which explains the details of synthesized code and provides links

4

back to the speci�cation.

� a printable (PDF) version of the explanations in form of a standardized
design document.

All documents are generated out of the XML document, using XLST for
re-arranging the information and for layout. The explanation text in these doc-
uments has been assembled from the axiom templates. It thus can be seen as a
description of the program design \from �rst principle". Although the language
output is still very rough and de�nitely needs linguistic post-processing, this
kind of explanation contains information in a form as it would be provided by
a human domain expert.

In the extended version of this paper we will have a more detailed description
of Amphion/NAV and the explanation module.

4 Conclusions

As the explanation module of Amphion/NAV demonstrates, valuable informa-
tion can be extracted from proofs found by an automated theorem prover. An
important prerequisite here is that the information is presented in a format and
a way, the domain engineer is used to. In our case, the entire explanation fully
hides away the underlying logic and reasoning system used to synthesize the
program. The proof, containing hundreds of inference steps is converted in such
a way that it relates the input speci�cation with the �nal product (C++ code).

This technique opens up an entirely new level of traceability between speci�-
cation and source code. In the design and implementation of safety-critical code
(according to the standard document DO-178B), traceability between the di�er-
ent artifacts is of central importance for code reviews and certi�cation. However,
this is only one aspect. Current practice of certi�cation of safety-critical code
very much requires following rigid processes and relies on standardized docu-
ments. Any change in the software requires an update of many documents. Here,
the automatic generation of standardized documents from proofs (for synthesis
as inAmphion/NAV, but also from veri�cation) can substantially facilitate and
accelerate the design process, because consistency between the software artifact
and the documentation is guaranteed.

In the future one could even imagine that parts of the lengthy manual cer-
ti�cation process is augmented by automatic checks. Proof-carrying code (e.g.,
[NL98b, NL98a]) might be a small step towards this direction. In all cases, these
techniques require that the automated theorem prover is capable of e�ciently
producing a machine oriented proof. Also, work needs to be done to relate this
proof back to the application domain in a way transparent with respect to all
formula transformations. These examples make it obvious that future appli-
cations require techniques of result- and feed-back presentation which go far
beyond traditional, mathematically-oriented proof presentation.

Acknowledgements. Without the Amphion/NAV team (Guillaume Brat,

5

Mike Lowry, John Penix, Tom Pressburger, Phil Oh, Mahadevan Subramaniam,
Je�rey van Baalen, Jonathan Whittle) this paper would be a hollow position
statement.

References

[BH97] Robert Brown and Patrick Hwang. Introduction to Random Signals
and Applied Kalman Filtering. John Wiley & Sons, 3rd edition,
1997.

[DW95] B.I. Dahn and A. Wolf. Natural Language Representation and
Combination of Automatically Generated Proofs. In Proc. First In-
ternational Workshop Frontiers of Combining Systems , FroCoS'96,
Muenchen, Germany. (to appear), 1995.

[FSS98] Bernd Fischer, Johann M. Ph. Schumann, and Gregor Snelting.
Deduction-based software component retrieval. In Automated De-
duction - A Basis for Applications. Kluwer, 1998. To Appear.

[GLMS94] Chr. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2:
Recent Developments (System Abstract) . In Proc. CADE 12, pages
778{782, June 1994.

[Hor99] H. Horacek. Presenting proofs in a human-oriented way. In
H. Ganzinger, editor, Automated Deduction | CADE{16, volume
1632 of LNAI, pages 142{156. Springer Verlag, 1999.

[Kau98] M. Kaufmann. Acl 2 support for veri�cation projects | invited
talk |. pages 220{238, 1998.

[Let92] Letz, R. et al. SETHEO: A High-Performance Theorem Prover.
JAR, 8(2):183{212, 1992.

[McC94] William W. McCune. OTTER 3.0 reference manual and guide.
Technical report ANL-94/6, Argonne National Laboratory, Ar-
gonne, IL, USA, 1994.

[MW92] Zohar Manna and Richard Waldinger. Fundamentals of deductive
program synthesis. IEEE Transactions on Software Engineering,
18(8):674{704, August 1992.

[NL98a] G. C. Necula and P. Lee. The design and implementation of a
certifying compiler. In Proceedings of the 1998 ACM SIGPLAN
Conference on Prgramming Language Design and Implementation
(PLDI), pages 333{344, 1998.

[NL98b] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying
code. In G. Vigna, editor, Safe, Untrusted Agents using Proof-
Carrying Code, volume 1419 of Lecture Notes in Computer Science,
pages 61{91. Springer-Verlag, Berlin Germany, 1998.

6

[Sch01] Johann Schumann. Automated Theorem Proving in Software Engi-
neering. Springer, 2001. in print.

[Se97] G. Sutcli�e and C. Suttner (eds.). The cade-13 automated theo-
rem proving system competition. Journal of Automated Reasoning,
18(2), 1997.

[SWL+94] Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Press-
burger, and Ian Underwood. Deductive composition of astronomi-
cal software from subroutine libraries. In Alan Bundy, editor, Proc.
12th International Conference Automated Deduction, volume 814
of Lecture Notes in Arti�cal Intelligence, pages 341{355. Springer,
June/July 1994.

[vBRLP98] J. van Baalen, P. Robinson, M. Lowry, and T. Pressburger. Explain-
ing synthesized software. In Thirteenth International Conference on
Automated Software Engineering, pages 240{248. IEEE Computer
Society Press, 1998.

[WS97] A. Wolf and J. Schumann. ILF-SETHEO: Processing Model Elim-
ination Proofs for Natural Language Output. In Conference on
Automated Deduction (CADE) 14, 1997.

7

<argument type="function" path="(12 1 2 4 3 ANCILLARY)">

<function path="(12 1 2 4 3)"><head>MK-MX</head>

...

<reason axiom="CALC-MEASUREMENT-ROWS-NON-NIL">EACH

SENSOR MEASUREMENT CORRESPONDS TO A ROW IN THE MEASUREMENT MATRIX

</reason>

<argument type="constant" path="(12 1 2 4 3 1)"><value>2</value></argument>

<function path="(12 1 2 4 3 3 1 1)"><head>X-COORD</head>

<reason axiom="MEASUREMENT-ROW-NON-NIL">EACH ENTRY IN EACH ROW IN THE

MEASUREMENT MATRIX IS FORMED FROM LINEARIZING AN EQUATION REPRESENTING

THE MEASUREMENT AROUND A NOMINAL TRAJECTORY

</reason>

<reason axiom="MEASUREMENT-ROW-NON-NIL">I.E. FOR MEASUREMENT Z_I ,

STATE VARIABLE X_J

</reason>

Figure 1: Excerpts from the XML explanation document

Figure 2: Screen dump of a part of the explanation document

8

